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Abstract
This work is devoted to investigate explicit solutions of the time-fractional
diffusion equations with external forces by considering various diffusion
coefficients and an absorbent rate. Besides, the 2nth moment related to such an
equation is also discussed. Consequently, the diffusion type can be determined
from the mean-square displacement. In addition, a rich class of diffusive
processes, including normal and anomalous ones, can be obtained.

PACS numbers: 05.30.Pr, 05.10.Gg

1. Introduction

The ubiquity of the anomalous diffusion phenomenon in the nature has attracted the interest
of researchers from both the theoretical and experimental point of view. In fact, fractional
diffusion equations and the nonlinear fractional diffusion equations have been successfully
applied to several physical situations such as percolation of gases through porous media
[1], thin saturated regions in porous media [2], in the transport of fluid in porous media
and surface growth [3], diffusion of dissolved solutes into immobile water zones of various
sizes, a standard solid-on-solid model for surface growth, thin liquid films spreading under
gravity [4], modeling of non-Markvian dynamical processes in protein folding [5], relaxation
to equilibrium in system (such as polymer chains and membranes) with long temporal
memory [6] and anomalous transport in disordered systems [7]. Note that the physical
systems mentioned above essentially concern anomalous diffusion of the correlated type (both
sub- and super-diffusion; see [8] and references therein) or of the Lévy type (see [9] and
references therein). The anomalous correlated diffusion usually has a finite second moment
〈x2〉 ∝ tσ (σ > 1, σ = 1 and 0 < σ < 1 correspond to super-diffusion, normal diffusion
and sub-diffusion, respectively; σ = 0 corresponds basically to localization). The properties
concerning these equations have been intensively investigated [10–14].
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In [15], Lenzi et al investigated the solutions for the fractional nonlinear diffusion equation

∂γ

∂tγ
P (x, t) =

∫ t

0
dt ′

∂

∂x

{
D(x, t − t ′)

∂µ−1

∂xµ−1
[P(x, t ′)]v

}
− ∂

∂x
{F(x)P (x, t)}, 0 < γ < 1, (1)

where γ, µ, ν ∈ R,D(x, t) = D(t)|x|−θ is a diffusion coefficient, F(x) ≡ −dV (x)/dx is
an external force (drift) associated with the potential V (x). In this paper, we will discuss the
solutions for the fractional diffusion equation

∂γ

∂tγ
P (x, t) =

∫ t

0
dt ′

∂

∂x

{
D(x, t − t ′)

∂µ−1

∂xµ−1
[P(x, t ′)]v

}
− ∂

∂x
{F(x)P (x, t)} − α(t)P (x, t), 0 < γ < 1, (2)

with an absorbent or source term α(t), where γ, µ, ν ∈ R , D(x, t) = D(t) is a diffusion
coefficient, F(x) ≡ −dV (x)/dx. Here, we use the Caputo operator1 for the fractional
derivative, and we work with the positive spatial variable x. Later on, we will extend the
results to the entire real x-axis by the use of symmetry (in other words, we are working with
∂/∂|x| and ∂µ−1/∂|x|µ−1). Also, we employ, in general, the initial condition P(x, 0) = g(x)

(g(x) is a given function), and the boundary condition P(x → ±∞, t) → 0. Note that
when (µ, γ, ν) = (2, 1, 1), α(t) = 0, equation (2) recovers the standard Fokker–Planck
equation in the presence of a drift taking memory effects into account. The particular case
F(x) = 0, α(t) = 0 and D(t) = Dδ(t) with (µ, γ ) = (2, 1) has been considered by Spohn
[3], and the general case with conditions (µ, γ ) = (2, 1) and α(t) = 0 has been investigated in
[17–19]. Our present investigation will be related to the case involving fractional derivatives
(i.e. γ 	= 1) and an absorption term α(t) = α > 0.

Explicit solutions play an important role in analyzing physical situations, since they
contain, in principle, precise information about the system. In particular, they can be used
as a useful guide to control the accuracy of numerical solutions. For these reasons, we
dedicated this work to investigate the solutions of a particular case of equation (2) with
0 < γ < 1, µ = 2, ν = 1, F (x) = k, α(t) = α, where k and α are positive constants, and a
variety of different diffusion coefficients D(t), that is,

∂γ

∂tγ
P (x, t) =

∫ t

0
dt ′

{
D(t − t ′)

∂2

∂x2
P(x, t ′)

}
− k

∂

∂x
P (x, t) − αP (x, t), 0 < γ < 1.

(3)

In order to give support to possible investigations of physical systems modeling by the diffusion
equations is studied here. The paper is organized as follows. In section 2, we present the
exact solutions of equation (3) with the natural boundary condition P(x → ±∞, t) → 0,
the initial condition P(x, 0) = g(x) and various diffusion coefficients D(t). In section 3, we
analyze the 2nth moment, including the mean-square displacement, related to equation (3).
The conclusion is presented in section 4.

1 The definition of the fractional Caputo derivative is ∂γ ρ/∂tγ = [1/	(n − γ )]
∫ t

0 dt ′[ρ(n)/(t − t ′)γ−n+1], where
n − 1 < γ < n.
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2. Explicit solutions for different D(t)

In this section, we focus on equation (3). We first restrict our attention to the positive spatial
variable x and then extend to the whole real axis by symmetry. By employing the Laplace
transform with respect to the time t in equation (3), we obtain

D̃(s)
d2

dx2
P̃ (x, s) − k

d

dx
P̃ (x, s) − (sγ + α)P̃ (x, s) = −sγ−1P(x, 0), (4)

where P̃ (x, s) = L {P(x, t)}, D̃(s) = L {D(t)} and L {f (t)} = ∫ ∞
0 dt e−stf (t) denotes

the Laplace transform of the function f where Re s 
 1, and the branch of sγ is taken such
that sγ > 0 when s > 0. In equation (4), use has been made that L {∂γ P (x, t)/∂tγ } =
sγ P̃ (x, s) − sγ−1P(x, t)|t=0 (see [20]). Equation (4) is a linear, non-homogenous, ordinary
differential equation with respect to the variable x, which can be solved explicitly. Let us
denote Pδ(x, t) the solution of equation (3) with the initial condition P(x, 0) = δ(x) and
P̃δ(x, s) is the Laplace transform of Pδ(x, t) with respect to t. Then P̃δ(x, s) is the solution of
equation (4) with P(x, 0) = δ(x) on the right-hand side of (4), which can be solved as

P̃δ(x, s) = C1 eλ1x + C2 eλ2x − sγ−1

D̃(s)

∫ x

0

eλ1(x−t) − eλ2(x−t)

λ1 − λ2
δ(t) dt, (5)

where

λ1 = k +
√

k2 + 4D̃(s)(α + sγ )

2D̃(s)
, λ2 = k −

√
k2 + 4D̃(s)(α + sγ )

2D̃(s)
,

and C1, C2 are constants to be determined. Since
∫ x

0 dt eλi (x−t)δ(t) = eλix , we have

P̃δ(x, s) =
[
C1 − sγ−1

D̃(s)(λ1 − λ2)

]
eλ1x +

[
C2 +

sγ−1

D̃(s)(λ1 − λ2)

]
eλ2x. (6)

To determine the constants C1, C2, we restrict s to be a sufficiently large positive number.
Assuming D̃(s) > 0, which is the case we discussed below, we have λ1 > 0, λ2 < 0. Note
that the boundary condition P(x, t) → 0(x → +∞) implies that P̃δ(x, s) → 0(x → +∞),
and the normalization condition

∫ +∞
−∞ dxP (x, t) = 1, implies that

∫ +∞
0 dxP̃ (x, s) = 1/2s.

We finally obtain the solution of equation (4) with P(x, 0) = δ(x):

P̃δ(x, s) = −λ2

2s
eλ2|x| = −k +

√
k2 + 4D̃(s)(sγ + α)

4D̃(s)s
e

k−
√

k2+4D̃(s)(sγ +α)

2D̃(s)
|x|

. (7)

Now, the solution Pδ(x, t) of equation (3) is the inverse Laplace transform of P̃δ(x, s)

given in (7), which is difficult to get an explicit formula in general. For some spacial
parameters and diffusion coefficient D(t), it can be expressed in Fox H-function. For arbitrary
0 < γ < 1, we prefer to get a power series solution for Pδ(x, t) by using Taylor’s expansions
of the exponential function and the binomial function:

ez =
+∞∑
n=0

zn

n!
, and (1 + z)α = 1 + αz + C2

αz2 + C3
αz3 + · · · + Cn

αzn + · · · , |z| < 1,

where Cα
n = α(α − 1) · · · (α − n + 1)/n!.

Now we derive the explicit solution of equation (3) by making the inverse Laplace
transform of P̃δ(x, s) for various diffusion coefficients:

Case 1. D(t) = Dδ(t), i.e. D̃(s) = D, the case which was also discussed in [8, 19]. When
Re s 
 1, we have the following expansions:

P̃δ(x, s) =
+∞∑
n=0

(−1)|x|n(k −
√

k2 + 4D(α + sγ ))n+1

n!2n+2Dn+1s
,

3
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1 − k√

k2 + 4D(α + sγ )

)n+1

=
n+1∑
m=0

Cm
n+1(−1)mkm(k2 + 4D(α + sγ ))−m/2,

(k2 + 4D(α + sγ ))(n+1−m)/2 =
+∞∑
j=0

C
j

(n+1−m)/2k
2j (4D(α + sγ ))(n+1−m)/2−j ,

and

(α + sγ )(n+1−m)/2−j =
+∞∑
i=0

Ci
(n+1−m)/2−jα

isγ [(n+1−m)/2−j−i].

Inserting these into (7), we have

P̃δ(x, s) =
∞∑

n=0

|x|n
n!

(−1)

2n+2

n+1∑
m=0

Cm
n+1(−1)n+m+1km

∞∑
j=0

C
j

(n+1−m)/2k
2j 2n+1−m−2j

×
∞∑
i=0

Ci
(n+1−m)/2−jα

i s
γ [(n+m+1)/2−j−i]−1

D(n+m+1)/2+j
. (8)

By applying the known Laplace transform of the function tv [21, formula 4.3(1)], due to the
uniqueness of the Laplace transform, we obtain the explicit solution to equation (3) herein:

Pδ(x, t) =
∞∑

n=0

|x|n
n!

(−1)

2n+2

n+1∑
m=0

Cm
n+1(−1)n+m+1km

∞∑
j=0

C
j

(n+1−m)/2k
2j 2n+1−m−2j

×
∞∑
i=0

Ci
(n+1−m)/2−jα

i t−γ [(n+m+1)/2−j−i]

D(n+m+1)/2+j	
(
1 − γ

(
n+m+1

2 − j − i
)) . (9)

In particular, if k = 0, i.e. without the external force, and α 	= 0, equation (9) becomes

Pδ(x, t) =
∞∑

n=0

|x|n
n!

1

2

( 1

D

) n+1
2

∞∑
i=0

Ci
(n+1)/2α

i t−γ (n+1)/2−i

	
(
1 − γ

(
n+1

2 − i
)) . (10)

Similarly, if k 	= 0, α = 0, equation (9) reduces to

Pδ(x, t) =
∞∑

n=0

|x|n
n!

(−1)

2n+2

n+1∑
m=0

Cm
n+1(−1)n+m+1km

×
∞∑

j=0

C
j

(n+1−m)/2k
2j 2n+1−m−2j t−γ [(n+m+1)/2−j ]

D(n+m+1)/2+j	
(
1 − γ

(
n+m+1

2 − j
)) . (11)

When k = 0, α = 0, we recover the result given in [19]:

Pδ(x, t) =
∞∑

n=0

|x|n
n!

1

2

( 1

D

) n+1
2 t−γ (n+1)/2

	
(
1 − γ

(
n+1

2

)) . (12)

From (9), the solution of equation (3), subject to the general initial condition P(x, 0) =
g(x), is given by

Pg(x, t) =
∫ +∞

−∞
dx ′g(x − x ′)Pδ(x

′, t)

=
∫ +∞

−∞
dx ′g(x − x ′)

{ ∞∑
n=0

|x ′|n
n!

(−1)

2n+2

n+1∑
m=0

Cm
n+1(−1)n+m+1km

4
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×
∞∑

j=0

C
j

(n+1−m)/2k
2j 2n+1−m−2j

×
∞∑
i=0

Ci
(n+1−m)/2−jα

i t−γ [(n+m+1)/2−j−i]

D(n+m+1)/2+j	
(
1 − γ

(
n+m+1

2 − j − i
))}

, (13)

where Pg(x, t) denotes the solution of equation (3) subjects to the initial condition P(x, 0) =
g(x).

Case 2. D(t) = D e−t/τc /τc, i.e. D̃(s) = D/(1 + τcs), the Cattaneo case [18]. By the similar
way we discussed in Case 1, we get from equation (7) that

Pδ(x, t) =
∞∑

n=0

|x|n
n!

(−1)

2n+2

n+1∑
m=0

Cm
n+1(−1)n+m+1km

∞∑
j=0

C
j

(n+1−m)/2k
2j 2n+1−m−2j

×
∞∑
i=0

Ci
(n+1−m)/2−jα

i
( τc

D

) n+m+1
2 +j

∞∑
l=0

Cl
(n+m+1)/2+j

× 1

τ l
c

t l−γ [(n+m+1)/2−j−i]−(n+m+1)/2−j

	
(
1 + l − γ

(
n+m+1

2 − j − i
) − n+m+1

2 − j
) . (14)

In particular, if k = 0, α 	= 0, we obtain from equation (14) that

Pδ(x, t) =
∞∑

n=0

|x|n
n!

1

2

( τc

D

) n+1
2

∞∑
i=0

Ci
(n+1)/2α

i

×
∞∑
l=0

Cl
(n+1)/2

1

τ l
c

t l−γ [(n+1)/2−i]−(n+1)/2

	
(
1 + l − γ

(
n+1

2 − i
) − n+1

2

) ; (15)

if k 	= 0, α = 0, we have

Pδ(x, t) =
∞∑

n=0

|x|n
n!

(−1)

2n+2

n+1∑
m=0

Cm
n+1(−1)n+m+1km

∞∑
j=0

C
j

(n+1−m)/2k
2j 2n+1−m−2j

×
( τc

D

) n+m+1
2 +j

∞∑
l=0

Cl
(n+m+1)/2+j

1

τ l
c

t l−γ [(n+m+1)/2−j ]−(n+m+1)/2−j

	
(
1 + l − γ

(
n+m+1

2 − j
) − n+m+1

2 − j
) ; (16)

and if k = 0, α = 0, we recover the result given in [18]

Pδ(x, t) =
∞∑

n=0

|x|n
n!

1

2

( τc

D

) n+1
2

∞∑
l=0

Cl
(n+1)/2

1

τ l
c

t l−(γ +1) n+1
2

	
(
1 + l − (γ + 1) n+1

2

) . (17)

From (14), the solution of equation (3), subject to the general initial condition P(x, 0) =
g(x), is given by

Pg(x, t) =
∫ +∞

−∞
dx ′g(x − x ′)Pδ(x

′, t)

=
∫ +∞

−∞
dx ′g(x − x ′)

{ ∞∑
n=0

|x ′|n
n!

(−1)

2n+2

n+1∑
m=0

Cm
n+1(−1)n+m+1km

×
∞∑

j=0

C
j

(n+1−m)/2k
2j 2n+1−m−2j

∞∑
i=0

Ci
(n+1−m)/2−jα

i
( τc

D

) n+m+1
2 +j

∞∑
l=0

Cl
(n+m+1)/2+j

× 1

τ l
c

t l−γ [(n+m+1)/2−j−i]−(n+m+1)/2−j

	
(
1 + l − γ

(
n+m+1

2 − j − i
) − n+m+1

2 − j
)}

. (18)

5
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Case 3. D(t) = Dta−1/	(a), a > 0, i.e. D̃(s) = Ds−a . In this case, we get from
equation (7) that

Pδ(x, t) =
∞∑

n=0

|x|n
n!

(−1)

2n+2

n+1∑
m=0

Cm
n+1(−1)n+m+1km

∞∑
j=0

C
j

(n+1−m)/2k
2j 2n+1−m−2j

×
∞∑
i=0

Ci
(n+1−m)/2−jα

i t−γ [(n+m+1)/2−j−i]−a[(n+m+1)/2+j ]

D(n+m+1)/2+j	
(
1 − γ

(
n+m+1

2 − j − i
) − a

(
n+m+1

2 + j
)) .

(19)

In particular, if k = 0, α 	= 0, from equation (19), we have

Pδ(x, t) =
∞∑

n=0

|x|n
n!

1

2

(
1

D

) n+1
2

∞∑
i=0

Ci
(n+1)/2α

i t−γ [(n+1)/2−i]−a( n+1
2 )

	
(
1 − γ

(
n+1

2 − i
) − a

(
n+1

2

)) . (20)

Moreover, if k 	= 0, α = 0, we have

Pδ(x, t) =
∞∑

n=0

|x|n
n!

(−1)

2n+2

n+1∑
m=0

Cm
n+1(−1)n+m+1km

∞∑
j=0

C
j

(n+1−m)/2k
2j 2n+1−m−2j

× t−γ [(n+m+1)/2−j ]−a( n+m+1
2 +j)

D(n+m+1)/2+j	
(
1 − γ

(
n+m+1

2 − j
) − a

(
n+m+1

2 + j
)) . (21)

If k = 0, α = 0, equation (19) reduces to the result given in [15]

Pδ(x, t) =
∞∑

n=0

|x|n
n!

1

2

(
1

D

) n+1
2 t−(γ +a)(n+1)/2

	
(
1 − (γ + a)

(
n+1

2

)) . (22)

From (19), the solution of equation (3), subject to the general initial condition P(x, 0) =
g(x), is given by

Pg(x, t) =
∫ +∞

−∞
dx ′g(x − x ′)Pδ(x

′, t)

=
∫ +∞

−∞
dx ′g(x − x ′)

{ ∞∑
n=0

|x ′|n
n!

(−1)

2n+2

n+1∑
m=0

Cm
n+1(−1)n+m+1km

×
∞∑

j=0

C
j

(n+1−m)/2k
2j 2n+1−m−2j

×
∞∑
i=0

Ci
(n+1−m)/2−jα

i t−γ [(n+m+1)/2−j−i]−a( n+m+1
2 +j)

D(n+m+1)/2+j	
(
1 − γ

(
n+m+1

2 − j − i
) − a

(
n+m+1

2 + j
))}

.

(23)

3. Mean square displacement

In order to investigate the properties of the solutions obtained in section 2, corresponding to
equation (3). We explore formal results for the time behavior of the moments, in particular, of
the mean-square displacement. In this direction, by simple calculation, we obtain a dynamic
equation for the 2nth moment:

dγ

dtγ
〈x2n〉(t) = 2n(2n − 1)

∫ t

0
dt ′D(t − t ′)〈x2n−2〉(t ′) − α〈x2n〉(t) (24)

6
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for n = 1, 2, . . .. To find the 2nth moment related to this equation, a coupled system of
equations needs to be solved.

Remark. Because P(x, t) is an even function, we can easily get 〈x2n−1〉(t) =∫ +∞
−∞ x2n−1P(x, t) dx = 0. That is why we just study the 2nth moment corresponding to

equation (3).

With the initial condition P(x, 0) = δ(x), by employing the Laplace transform in
equation (24), we obtain that

sγ 〈̃x2n〉 − sγ−1〈x2n〉|t=0 = 2n(2n − 1)D̃(s)〈̃x2n−2〉 − α〈̃x2n〉, (25)

where 〈̃x2n〉 denotes the Laplace transform of 〈x2n〉. Since 〈x2n〉|t=0 = ∫ +∞
−∞ x2nP (x, 0) dx =∫ +∞

−∞ x2nδ(x) dx = 0, we get a recurrent relation

〈̃x2n〉 = 2n(2n − 1)
D̃(s)

sγ + α
〈̃x2n−2〉. (26)

Equation (26) can be written as a coupled system of equations:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

〈̃x2n〉 = 2n(2n − 1) D̃(s)

sγ +α
〈̃x2n−2〉,

〈̃x2n−2〉 = (2n − 2)(2n − 3) D̃(s)

sγ +α
〈̃x2n−4〉,

· · · · · · · · · · · · ,
〈̃x2〉 = 2 D̃(s)

sγ +α
1
s
,

here, we have used the fact 〈̃x0〉 = 1/s. Taking the multiplication on both sides of the above
system concludes that

〈̃x2n〉 = (2n)!

s

(
D̃(s)

sγ + α

)n

. (27)

In the following, we take the inverse Laplace transform on both side of equation (27) for
various diffusion coefficients in time.

Case 1. D(t) = Dδ(t), i.e. D̃(s) = D. In this case,

〈̃x2n〉 = (2n)!

s
Dn

(
1

sγ + α

)n

. (28)

By using the Laplace transform of the generalized Mittag–Leffler function given in [20]∫ ∞

0
e−st tαk+β−1E

(k)
α,β(±atα) dt = k!sα−β

(sα ∓ a)k+1
(Re(s) > |a|1/α), (29)

where Eα,β(z) is the generalized Mittag–Leffler function defined by Eα,β(z) = ∑∞
n=0 zn/	

(nα + β), and E
(k)
α,β(z) = dkEα,β(z)/dzk , we have

〈x2n〉 = (2n)!

(n − 1)!
Dntnγ E

(n−1)
γ,γ +1(−αtγ ). (30)

By taking n = 1 in equation (30), we obtain the mean-square displacement

〈x2〉 = 2Dtγ Eγ,γ +1(−αtγ ). (31)

From equation (31), we can obtain that 〈x2〉 ≈ 2D
	(1+γ )

[
1 − α

	(γ +1)

	(2γ +1)
tγ

]
tγ while t � 1,

which implies that for 0 < γ < 1, the system is a sub-diffusion for t � 1, and that the
generalized diffusion coefficient Kγ = D

[
1 − α

	(γ +1)

	(2γ +1)
tγ

]
is not a constant but a function of

time t if α > 0.
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To get the behavior of 〈x2〉 for t 
 1, we use the asymptotic formula (see [22])

Eγ,β(z) ∼ − 1

	(β − γ )

1

z
, z → −∞, (32)

for 0 < γ < 1. When α > 0, we get

〈x2〉 = 2Dtγ Eγ,γ +1(−αtγ ) ≈ 2D

α
, t 
 1. (33)

This shows that the mean-square displacement of the system is independent of the parameter
γ and has zero diffusion exponent for large time, which corresponds basically to localization.

When α = 0, equation (31) reduces to the result given in [15]

〈x2〉 = 2D

	(1 + γ )
tγ , (34)

which implies that for 0 < γ < 1, the system is a sub-diffusion.

Case 2. D(t) = D e−t/τc /τc, i.e. D̃(s) = D/(1 + τcs). We have

〈̃x2n〉 = (2n)!

s

(
D

τc

)n (
1

sγ + α

)n (
1

s + 1/τc

)n

. (35)

Applying the Laplace transform of the Mittag–Leffler function equation (29) to equation (35)
gives

〈x2n〉 = (2n)!

[(n − 1)!]2

(
D

τc

)n ∫ t

0
dt ′(t − t ′)nγ−1E

(n−1)
1,1

(
− 1

τc

(t − t ′)
)

t ′nγ E
(n−1)
γ,γ +1(−αt ′γ ).

(36)

Taking n = 1 in equation (36) yields the mean-square displacement

〈x2〉 = 2D

τc

∫ t

0
dt ′(t − t ′)γ−1E1,1

(
− 1

τc

(t − t ′)
)

t ′γ Eγ,γ +1(−αt ′γ ). (37)

Thus, we can obtain that

〈x2〉 ≈ 2

	(1 + 2γ )

D	(γ )

τc

[
1 − α

	(2γ + 1)

	(3γ + 1)
tγ

]
t2γ (38)

for t � 1, and that the generalized diffusion coefficient K2γ = D	(γ )

τc

[
1 − α

	(2γ +1)

	(3γ +1)
tγ

]
is not

a constant but a function of time t, if α > 0.
For t 
 1, we can also get for α > 0

〈x2〉 ≈ 2D

ατc

∫ t

0
dt ′(t − t ′)γ−1E1,1

(
− 1

τc

(t − t ′)
)

≈ 2D	(γ )τ
γ−1
c

α
, (39)

which also has zero diffusion exponent for large time, and corresponds basically to localization.
When α = 0, equation (37) becomes

〈x2〉 = 2D

τc	(1 + γ )

∫ t

0
dt ′(t − t ′)γ−1E1,1

(
− 1

τc

(t − t ′)
)

t ′γ

= 2D

τc	(1 + γ )

∫ t

0
dt ′t ′γ−1(t − t ′)γ e−t ′/τc . (40)

For t � 1, by setting α = 0 in equation (38), we can obtain that 〈x2〉 ≈ 2
	(1+2γ )

D	(γ )

τc
t2γ ,

which means that the system is a sub-diffusion if 0 < γ < 1
2 , a normal diffusion if γ = 1

2 ,
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and a super-diffusion if 1
2 < γ < 1. For t 
 1, it follows from Watson’s Lemma [23],

〈x2〉 ≈ 2Dτ
γ−1
c

γ
tγ , which corresponds to a sub-diffusion for 0 < γ < 1.

Case 3. D(t) = D ta−1

	(a)
, a > 0, i.e. D̃(s) = Ds−a . We have

〈̃x2n〉 = (2n)!
Dn

s1+an

(
1

sγ + α

)n

. (41)

Applying equation (29) in equation (41) gives that

〈x2n〉 = (2n)!

(n − 1)!
Dntn(γ +a)E

(n−1)
γ,γ +a+1(−αtγ ). (42)

By taking n = 1 in equation (42), we obtain the mean-square displacement

〈x2〉 = 2Dtγ +aEγ,γ +a+1(−αtγ ). (43)

For t � 1, equation (43) leads to

〈x2〉 ≈ 2D

	(1 + γ + a)

[
1 − α

	(1 + γ + a)

	(1 + 2γ + a)
tγ

]
tγ +a. (44)

And that the generalized diffusion coefficient Kγ +a = D
[
1 − α

	(1+γ +a)

	(1+2γ +a)
tγ

]
is not a constant

but a function of time t.
For t 
 1, we also get from (32)

〈x2〉 = 2Dtγ +aEγ,γ +a+1(−αtγ ) ≈ 2D

α	(a + 1)
ta. (45)

This shows that the system is a sub-diffusion, normal diffusion and super-diffusion, when
0 < a < 1, a = 1 and a > 1, respectively. Furthermore, it is independent of γ .

Let α = 0 in equation (43). We recover the result given in [15]

〈x2〉 = 2D

	(1 + γ + a)
tγ +a. (46)

It shows that 0 < a + γ < 1, a + γ = 1 and a + γ > 1 correspond to sub-diffusion, normal
diffusion and super-diffusion.

4. Summary and conclusions

In summary, we have worked on a one-dimensional generalized fractional diffusion
equation (3). In this context, we obtained the explicit solutions for the probability density
which satisfies the fractional diffusion equation (3) for various diffusion coefficients D(t) with
constant external forces and absorbent. When the absorbent disappeared, we recover the results
previously obtained by other authors. We also obtained the expressions of 2nth moment of the
probability density. In particular, from the expression of the mean-square displacement, we can
determine the type of diffusion process. For t � 1, the mean-square displacement has power
law approximately but the corresponding generalized diffusion coefficient is not a constant
but a function of time t. For t 
 1, the diffusion system corresponds basically to localization
for the diffusion coefficient D(t) = Dδ(t) and D(t) = D e−t/τc /τc, and corresponds to the
various types of diffusion process according to the parameter a for D(t) = Dta−1/	(a), when
the absorbent exists.
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